Instructions for Use

RealStar®
MERS-CoV (N gene) RT-PCR Kit 1.0

09/2018 EN
RealStar®

MERS-CoV (N gene) RT-PCR Kit 1.0

For use with

VERSANT® kPCR Molecular System AD (Siemens Healthcare)
ABI Prism® 7500 SDS (Applied Biosystems)
ABI Prism® 7500 Fast SDS (Applied Biosystems)
LightCycler® 480 Instrument II (Roche)
Rotor-Gene® 6000 (Corbett Research)
Rotor-Gene® Q5/6 plex Platform (QIAGEN)
CFX96™ Deep Well Real-Time PCR Detection System (Bio-Rad)
CFX96™ Real-Time PCR Detection System (Bio-Rad)
Mx 3005P™ QPCR System (Stratagene)
Content

1. Intended Use ... 6
2. Kit Components .. 6
3. Storage ... 6
4. Material and Devices required but not provided 7
5. Background Information .. 8
6. Product Description ... 9
 6.1 Real-Time PCR Instruments .. 10
7. Warnings and Precautions ... 11
8. Procedure .. 12
 8.1 Sample Preparation .. 12
 8.2 Master Mix Setup ... 13
 8.3 Reaction Setup .. 15
9. Programming the Real-Time PCR Instrument 16
 9.1 Settings .. 16
 9.1.1 Special Remarks for Rotor-Gene® 6000 and Q5/6 plex Platform 16
 9.2 Fluorescence Detectors (Dyes) .. 17
 9.3 Temperature Profile and Dye Acquisition 17
10. Data Analysis .. 18
 10.1 Validity of Diagnostic Test Runs 18
 10.1.1 Valid Diagnostic Test Run (qualitative) 18
 10.1.2 Invalid Diagnostic Test Run (qualitative) 18
 10.2 Interpretation of Results ... 19
 10.2.1 Qualitative Analysis ... 19
11. Performance Evaluation ... 19
 11.1 Analytical Sensitivity .. 19
 11.2 Analytical Specificity ... 20
 11.3 Precision .. 21
12. Limitations ... 22
13. Quality Control .. 23
14. Technical Assistance .. 23
15. Literature .. 23
16. Trademarks and Disclaimers .. 24
17. Explanation of Symbols .. 25
1. **Intended Use**

The RealStar® MERS-CoV (N gene) RT-PCR Kit 1.0 is an *in vitro* diagnostic test, based on real-time PCR technology, for the qualitative detection of MERS-CoV N gene specific RNA of Middle East Respiratory Syndrome coronavirus (MERS-CoV).

2. **Kit Components**

<table>
<thead>
<tr>
<th>Lid Color</th>
<th>Component</th>
<th>Number of Vials</th>
<th>Volume [µl/Vial]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue</td>
<td>Master A</td>
<td>8</td>
<td>60</td>
</tr>
<tr>
<td>Purple</td>
<td>Master B</td>
<td>8</td>
<td>120</td>
</tr>
<tr>
<td>Green</td>
<td>Internal Control</td>
<td>1</td>
<td>1000</td>
</tr>
<tr>
<td>Red</td>
<td>Positive Control</td>
<td>1</td>
<td>250</td>
</tr>
<tr>
<td>White</td>
<td>Water (PCR grade)</td>
<td>1</td>
<td>500</td>
</tr>
</tbody>
</table>

3. **Storage**

- The RealStar® MERS-CoV (N gene) RT-PCR Kit 1.0 is shipped on dry ice. The components of the kit should arrive frozen. If one or more components are not frozen upon receipt, or if tubes have been compromised during shipment, contact altona Diagnostics GmbH for assistance.
- All components should be stored between -25°C and -15°C upon arrival.
- Repeated thawing and freezing of Master reagents (more than twice) should be avoided, as this might affect the performance of the assay. The reagents should be frozen in aliquots, if they are to be used intermittently.
- Storage between +2°C and +8°C should not exceed a period of two hours.
- Protect Master A and Master B from light.
4. Material and Devices required but not provided

- Appropriate real-time PCR instrument (see chapter 6.1 Real-Time PCR Instruments)
- Appropriate nucleic acid extraction system or kit (see chapter 8.1 Sample Preparation)
- Desktop centrifuge with a rotor for 2 ml reaction tubes
- Centrifuge with a rotor for microtiter plates, if using 96 well reaction plates
- Vortex mixer
- Appropriate 96 well reaction plates or reaction tubes with corresponding (optical) closing material
- Pipettes (adjustable)
- Pipette tips with filters (disposable)
- Powder-free gloves (disposable)

NOTE

Please ensure that all instruments used have been installed, calibrated, checked and maintained according to the manufacturer’s instructions and recommendations.

NOTE

It is highly recommended to use the 72-well rotor with the appropriate 0.1 ml reaction tubes, if using the Rotor-Gene® 6000 (Corbett Research) or the Rotor-Gene® Q 5/6 plex (QIAGEN).
5. Background Information

The Middle East Respiratory Syndrome Coronavirus (MERS-CoV) belongs to the lineage C betacoronavirus in the family Coronaviridae. MERS-CoV was first identified in the Kingdom of Saudi Arabia in 2012 in a patient with acute respiratory distress syndrome [1]. MERS-CoV is an enveloped, positive-sense, single-stranded RNA virus with a genome size of 30 kb [2], encoding four structural proteins [3]. MERS-CoV is a zoonotic virus with dromedary camels as reservoir hosts most likely originating from bats. Main transmission routes for the virus are from dromedary camels to humans and human-to-human [1].

The clinical spectrum of MERS-CoV infection ranges from no symptoms or mild respiratory symptoms to severe acute respiratory disease and death. A typical presentation of MERS-CoV disease is fever, cough and shortness of breath. Pneumonia and gastrointestinal symptoms, including diarrhea, may also occur [4]. Severe illness can cause respiratory failure that requires mechanical ventilation and support in an intensive care unit. The virus appears to cause more severe disease in older people, and those with chronic diseases such as renal disease, cancer, chronic lung disease, and diabetes [3, 4].

For molecular diagnostics, WHO recommends a two-step diagnostic scheme firstly screening samples with the so called upE assay followed by a confirmatory assay targeting ORF1a. For samples with discrepant results for upE or ORF1a, WHO recommends sequencing of a third target, the RdRp (RNA-dependent RNA polymerase) or the N gene. Routine diagnostic laboratories rather perform a third RT-PCR targeting the N gene. The virus can be directly detected in different body fluids (e.g. urine, blood, stool) as well as in respiratory samples (upper respiratory tract: swabs; lower respiratory tract: sputum, BAL, aspirates) [1, 5].

9

RealStar® MERS-CoV (N gene) RT-PCR Kit 1.0

NOTE

Due to the relatively fast molecular evolution of RNA viruses, there is an inherent risk for any RT-PCR based test system that accumulation of mutations over time may lead to false negative results.

6. Product Description

The RealStar® MERS-CoV (N gene) RT-PCR Kit 1.0 is an in vitro diagnostic test, based on real-time PCR technology, for the qualitative detection of MERS-CoV N gene specific RNA of Middle East Respiratory Syndrome coronavirus (MERS-CoV).

The assay includes a heterologous amplification system (Internal Control) to identify possible RT-PCR inhibition and to confirm the integrity of the reagents of the kit.

Real-time RT-PCR technology utilizes reverse-transcriptase (RT) reaction to convert RNA into complementary DNA (cDNA), polymerase chain reaction (PCR) for the amplification of specific target sequences and target specific probes for the detection of the amplified DNA. The probes are labelled with fluorescent reporter and quencher dyes.

9
Probes specific for MERS-CoV \(N \) gene RNA are labelled with the fluorophore FAM™. The probe specific for the Internal Control (IC) is labelled with the fluorophore JOE™.

Using probes linked to distinguishable dyes enables the parallel detection of MERS-CoV \(N \) gene specific RNA and the Internal Control in corresponding detector channels of the real-time PCR instrument.

The test consists of three processes in a single tube assay:

- Reverse transcription of target and Internal Control RNA to cDNA
- PCR amplification of target and Internal Control cDNA
- Simultaneous detection of PCR amplicons by fluorescent dye labelled probes

The RealStar® MERS-CoV (N gene) RT-PCR Kit 1.0 consists of:

- Two Master reagents (Master A and Master B)
- Internal Control (IC)
- Positive Control
- PCR grade water

Master A and Master B contain all components (PCR buffer, reverse transcriptase, DNA polymerase, magnesium salt, primers and probes) to allow reverse transcription, PCR mediated amplification and detection of MERS-CoV \(N \) gene specific RNA and Internal Control in one reaction setup.

6.1 Real-Time PCR Instruments

The RealStar® MERS-CoV (N gene) RT-PCR Kit 1.0 was developed and validated to be used with the following real-time PCR instruments:

- VERSANT® kPCR Molecular System AD (Siemens Healthcare)
- ABI Prism® 7500 SDS (Applied Biosystems)
- ABI Prism® 7500 Fast SDS (Applied Biosystems)
7. Warnings and Precautions

Read the Instructions for Use carefully before using the product.

• Before first use check the product and its components for:
 ◦ Integrity
 ◦ Completeness with respect to number, type and filling (see chapter 2. Kit Components)
 ◦ Correct labelling
 ◦ Frozenness upon arrival
• Use of this product is limited to personnel specially instructed and trained in the techniques of real-time PCR and in vitro diagnostic procedures.
• Specimens should always be treated as infectious and/or biohazardous in accordance with safe laboratory procedures.
• Wear protective disposable powder-free gloves, a laboratory coat and eye protection when handling specimens.
• Avoid microbial and nuclease (DNase/RNase) contamination of the specimens and the components of the kit.
• Always use DNase/RNase-free disposable pipette tips with aerosol barriers.
• Always wear protective disposable powder-free gloves when handling kit components.
• Use separated and segregated working areas for (i) sample preparation, (ii) reaction setup and (iii) amplification/detection activities. The workflow in the
laboratory should proceed in unidirectional manner. Always wear disposable
gloves in each area and change them before entering a different area.

- Dedicate supplies and equipment to the separate working areas and do not
 move them from one area to another.
- Store positive and/or potentially positive material separated from all other
 components of the kit.
- Do not open the reaction tubes/plates post amplification, to avoid contamination
 with amplicons.
- Additional controls may be tested according to guidelines or requirements of
 local, state and/or federal regulations or accrediting organizations.
- Do not autoclave reaction tubes after the PCR, since this will not degrade the
 amplified nucleic acid and will bear the risk to contaminate the laboratory area.
- Do not use components of the kit that have passed their expiration date.
- Discard sample and assay waste according to your local safety regulations.

8. Procedure

8.1 Sample Preparation

Extracted RNA is the starting material for the RealStar® MERS-CoV (N gene)
RT-PCR Kit 1.0.

The quality of the extracted RNA has a profound impact on the performance of
the entire test system. It has to be ensured that the system used for nucleic acid
extraction is compatible with real-time PCR technology. The following kits and
systems are suitable for nucleic acid extraction:

- QIAamp® Viral RNA Mini Kit (QIAGEN)
- QIAsymphony® (QIAGEN)
- NucliSENS® easyMag® (bioMérieux)
- MagNA Pure 96 System (Roche)
• m2000sp (Abbott)
• Maxwell® 16 IVD Instrument (Promega)
• VERSANT® kPCR Molecular System SP (Siemens Healthcare)

Alternative nucleic acid extraction systems and kits might also be appropriate. The suitability of the nucleic acid extraction procedure for use with RealStar® MERS-CoV (N gene) RT-PCR Kit 1.0 has to be validated by the user.

If using a spin column based sample preparation procedure including washing buffers containing ethanol, it is highly recommended to perform an additional centrifugation step for 10 min at approximately 17000 x g (~ 13000 rpm), using a new collection tube, prior to the elution of the nucleic acid.

CAUTION

If your sample preparation system is using washing buffers containing ethanol, make sure to eliminate any traces of ethanol prior to elution of the nucleic acid. Ethanol is a strong inhibitor of real-time PCR.

CAUTION

The use of carrier RNA is crucial for extraction efficiency and stability of the extracted nucleic acid.

For additional information and technical support regarding pre-treatment and sample preparation please contact our Technical Support (see chapter 14. Technical Assistance).

8.2 Master Mix Setup

All reagents and samples should be thawed completely, mixed (by pipetting or gentle vortexing) and centrifuged briefly before use.

The RealStar® MERS-CoV (N gene) RT-PCR Kit 1.0 contains a heterologous Internal Control (IC), which can either be used as a RT-PCR inhibition control or
as a control of the sample preparation procedure (nucleic acid extraction) and as a RT-PCR inhibition control.

► If the IC is used as a RT-PCR inhibition control, but not as a control for the sample preparation procedure, set up the Master Mix according to the following pipetting scheme:

<table>
<thead>
<tr>
<th>Number of Reactions (rxns)</th>
<th>1</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master A</td>
<td>5 µl</td>
<td>60 µl</td>
</tr>
<tr>
<td>Master B</td>
<td>10 µl</td>
<td>120 µl</td>
</tr>
<tr>
<td>Internal Control</td>
<td>1 µl</td>
<td>12 µl</td>
</tr>
<tr>
<td>Volume Master Mix</td>
<td>16 µl</td>
<td>192 µl</td>
</tr>
</tbody>
</table>

► If the IC is used as a control for the sample preparation procedure and as a RT-PCR inhibition control, add the IC during the nucleic acid extraction procedure.

► No matter which method/system is used for nucleic acid extraction, the IC must not be added directly to the specimen. The IC should always be added to the specimen/lysis buffer mixture. The volume of the IC which has to be added, always and only depends on the elution volume. It represents 10% of the elution volume. For instance, if the nucleic acid is going to be eluted in 60 µl of elution buffer or water, 6 µl of IC per sample must be added into the specimen/lysis buffer mixture.

► If the IC was added during the sample preparation procedure, set up the Master Mix according to the following pipetting scheme:

<table>
<thead>
<tr>
<th>Number of Reactions (rxns)</th>
<th>1</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master A</td>
<td>5 µl</td>
<td>60 µl</td>
</tr>
<tr>
<td>Master B</td>
<td>10 µl</td>
<td>120 µl</td>
</tr>
<tr>
<td>Volume Master Mix</td>
<td>15 µl</td>
<td>180 µl</td>
</tr>
</tbody>
</table>
8.3 Reaction Setup

► Pipette 15 µl of the Master Mix into each required well of an appropriate optical 96-well reaction plate or an appropriate optical reaction tube.

► Add 10 µl of the sample (eluate from the nucleic acid extraction) or 10 µl of the controls (Positive or Negative Control).

<table>
<thead>
<tr>
<th>Reaction Setup</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Master Mix</td>
<td>15 µl</td>
</tr>
<tr>
<td>Sample or Control</td>
<td>10 µl</td>
</tr>
<tr>
<td>Total Volume</td>
<td>25 µl</td>
</tr>
</tbody>
</table>

► Make sure that at least one Positive and one Negative Control is used per run.

► Thoroughly mix the samples and controls with the Master Mix by pipetting up and down.

► Close the 96-well reaction plate with appropriate lids or optical adhesive film and the reaction tubes with appropriate lids.

► Centrifuge the 96-well reaction plate in a centrifuge with a microtiter plate rotor for 30 seconds at approximately 1000 x g (~ 3000 rpm).
9. Programming the Real-Time PCR Instrument

For basic information regarding the setup and programming of the different real-time PCR instruments, please refer to the user manual of the respective instrument.

For detailed programming instructions regarding the use of the RealStar® MERS-CoV (N gene) RT-PCR Kit 1.0 on specific real-time PCR instruments please contact our Technical Support (see chapter 14. Technical Assistance).

9.1 Settings

► Define the following settings:

<table>
<thead>
<tr>
<th>Settings</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Reaction Volume</td>
<td>25 µl</td>
</tr>
<tr>
<td>Ramp Rate</td>
<td>Default</td>
</tr>
<tr>
<td>Passive Reference</td>
<td>None</td>
</tr>
</tbody>
</table>

9.1.1 Special Remarks for Rotor-Gene® 6000 and Q5/6 plex Platform

<table>
<thead>
<tr>
<th>Instrument Settings</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotor</td>
<td>72-Well Rotor</td>
</tr>
<tr>
<td>Reaction Volume</td>
<td>25 µl</td>
</tr>
</tbody>
</table>

CAUTION

Perform gain optimization: Perform optimization before 1st acquisition. Adjust the gain optimization for Green. Choose a “Target Sample Range” from 1 Fl up to 10 Fl.
9.2 Fluorescence Detectors (Dyes)

- Define the fluorescence detectors (dyes):

<table>
<thead>
<tr>
<th>Target</th>
<th>Detector Name</th>
<th>Reporter</th>
<th>Quencher</th>
</tr>
</thead>
<tbody>
<tr>
<td>MERS-CoV N gene specific RNA</td>
<td>MERS-CoV N gene</td>
<td>FAM™</td>
<td>(None)</td>
</tr>
<tr>
<td>Internal Control (IC)</td>
<td>IC</td>
<td>JOE™</td>
<td>(None)</td>
</tr>
</tbody>
</table>

9.3 Temperature Profile and Dye Acquisition

- Define the temperature profile and dye acquisition:

<table>
<thead>
<tr>
<th>Stage</th>
<th>Cycle Repeats</th>
<th>Acquisition</th>
<th>Temperature [°C]</th>
<th>Time [min:sec]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reverse Transcription</td>
<td>Hold</td>
<td>1</td>
<td>-</td>
<td>20:00</td>
</tr>
<tr>
<td>Denaturation</td>
<td>Hold</td>
<td>1</td>
<td>-</td>
<td>02:00</td>
</tr>
<tr>
<td>Amplification</td>
<td>Cycling</td>
<td>45</td>
<td>-</td>
<td>00:15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>yes</td>
<td>00:45</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>00:15</td>
</tr>
</tbody>
</table>
10. Data Analysis

For basic information regarding data analysis on specific real-time PCR instruments, please refer to the user manual of the respective instrument.

For detailed instructions regarding the analysis of the data generated with the RealStar® MERS-CoV (N gene) RT-PCR Kit 1.0 on different real-time PCR instruments please contact our Technical Support (see chapter 14. Technical Assistance).

10.1 Validity of Diagnostic Test Runs

10.1.1 Valid Diagnostic Test Run (qualitative)

A qualitative diagnostic test run is valid, if the following control conditions are met:

<table>
<thead>
<tr>
<th>Control ID</th>
<th>Detection Channel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FAM™</td>
</tr>
<tr>
<td>Positive Control</td>
<td>+</td>
</tr>
<tr>
<td>Negative Control</td>
<td>-</td>
</tr>
</tbody>
</table>

* The presence or absence of a signal in the JOE™ channel is not relevant for the validity of the test run.

10.1.2 Invalid Diagnostic Test Run (qualitative)

A qualitative diagnostic test run is invalid, (i) if the run has not been completed or (ii) if any of the control conditions for a valid diagnostic test run are not met.

In case of an invalid diagnostic test run, repeat testing by using the remaining purified nucleic acids or start from the original samples again.
10.2 Interpretation of Results

10.2.1 Qualitative Analysis

<table>
<thead>
<tr>
<th>Detection Channel</th>
<th>Result Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAM™</td>
<td>JOE™</td>
</tr>
<tr>
<td>+</td>
<td>+*</td>
</tr>
<tr>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

* Detection of the Internal Control in the JOE™ detection channel is not required for positive results in the FAM™ detection channel. A high MERS-CoV N gene RNA load in the sample can lead to a reduced or absent Internal Control signal.

11. Performance Evaluation

Performance evaluation of the RealStar® MERS-CoV (N gene) RT-PCR Kit 1.0 was done using a MERS-CoV N gene specific in vitro transcript.

11.1 Analytical Sensitivity

The analytical sensitivity of the RealStar® MERS-CoV (N gene) RT-PCR Kit 1.0 is defined as the concentration (copies/μl of the eluate) of MERS-CoV N gene specific RNA molecules that can be detected with a positivity rate of 95%. The analytical sensitivity was determined by analysis of dilution series of MERS-CoV N gene specific RNA.
Table 1: RT-PCR results used for the calculation of the analytical sensitivity with respect to the detection of MERS-CoV N gene specific RNA

<table>
<thead>
<tr>
<th>Input Conc. [copies/µl]</th>
<th>Number of Replicates</th>
<th>Number of Positives</th>
<th>Hit Rate [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.600</td>
<td>24</td>
<td>24</td>
<td>100</td>
</tr>
<tr>
<td>10.000</td>
<td>24</td>
<td>24</td>
<td>100</td>
</tr>
<tr>
<td>3.160</td>
<td>24</td>
<td>24</td>
<td>100</td>
</tr>
<tr>
<td>1.000</td>
<td>24</td>
<td>24</td>
<td>100</td>
</tr>
<tr>
<td>0.316</td>
<td>24</td>
<td>19</td>
<td>79.2</td>
</tr>
<tr>
<td>0.100</td>
<td>24</td>
<td>11</td>
<td>45.8</td>
</tr>
<tr>
<td>0.032</td>
<td>24</td>
<td>4</td>
<td>16.7</td>
</tr>
<tr>
<td>0.010</td>
<td>24</td>
<td>1</td>
<td>4.2</td>
</tr>
<tr>
<td>0.003</td>
<td>24</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

The analytical sensitivity of the RealStar® MERS-CoV (N gene) RT-PCR Kit 1.0 was determined by Probit analysis:

- For the detection of MERS-CoV N gene specific RNA, the analytical sensitivity is 0.71 copies/µl [95% confidence interval (CI): 0.43 - 1.62 copies/µl]

11.2 Analytical Specificity

The analytical specificity of the RealStar® MERS-CoV (N gene) RT-PCR Kit 1.0 is ensured by the thorough selection of the oligonucleotides (primers and probes). The oligonucleotides were checked by sequence comparison analysis against publicly available sequences to ensure the specificity for the target region.

The analytical specificity of the RealStar® MERS-CoV (N gene) RT-PCR Kit 1.0 was evaluated by testing a panel of genomic RNA/DNA extracted from viruses related to MERS-CoV and other pathogens causing similar symptoms.

The RealStar® MERS-CoV (N gene) RT-PCR Kit 1.0 did not cross-react with any of
the following pathogens:

- Coronavirus 229E
- Coronavirus HKU-1
- Coronavirus NL63
- Coronavirus OC43
- Human adenovirus
- Human metapneumovirus
- Human parainfluenza virus
- Human respiratory syncytial virus
- Influenza A virus
- Influenza B virus
- Rhinovirus
- SARS-CoV
- Bordetella pertussis
- Chlamydia pneumoniae
- Haemophilus influenzae
- Klebsiella pneumoniae
- Legionella pneumophila
- Mycobacterium tuberculosis
- Mycoplasma pneumoniae
- Streptococcus pneumoniae
- Streptococcus pyogenes

11.3 Precision

Precision of the RealStar® MERS-CoV (N gene) RT-PCR Kit 1.0 was determined as intra-assay variability (variability within one experiment), inter-assay variability (variability between different experiments) and inter-lot variability (variability between different production lots). Total variability was calculated by combining the three analyses.

The variability data are expressed in terms of standard deviation and coefficient of variation based on threshold cycle (C_T) values. At least six replicates per sample were analysed for intra-assay variability, inter-assay and inter-lot variability.
Table 2: Precision data for the detection of MERS-CoV N gene specific RNA

<table>
<thead>
<tr>
<th>MERS-CoV N gene</th>
<th>Average Threshold Cycle (Ct)</th>
<th>Standard Deviation</th>
<th>Coefficient of Variation [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intra-Assay Variability</td>
<td>31.21</td>
<td>0.11</td>
<td>0.35</td>
</tr>
<tr>
<td>Inter-Assay Variability</td>
<td>31.12</td>
<td>0.12</td>
<td>0.39</td>
</tr>
<tr>
<td>Inter-Lot Variability</td>
<td>31.21</td>
<td>0.08</td>
<td>0.26</td>
</tr>
<tr>
<td>Total Variability</td>
<td>31.15</td>
<td>0.11</td>
<td>0.35</td>
</tr>
</tbody>
</table>

Table 3: Precision data for the detection of the Internal Control

<table>
<thead>
<tr>
<th>Internal Control</th>
<th>Average Threshold Cycle (Ct)</th>
<th>Standard Deviation</th>
<th>Coefficient of Variation [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intra-Assay Variability</td>
<td>29.60</td>
<td>0.60</td>
<td>2.04</td>
</tr>
<tr>
<td>Inter-Assay Variability</td>
<td>30.61</td>
<td>0.82</td>
<td>2.67</td>
</tr>
<tr>
<td>Inter-Lot Variability</td>
<td>29.72</td>
<td>0.44</td>
<td>1.49</td>
</tr>
<tr>
<td>Total Variability</td>
<td>30.28</td>
<td>0.88</td>
<td>2.92</td>
</tr>
</tbody>
</table>

12. Limitations

- Strict compliance with the Instructions for Use is required for optimal results.
- Use of this product is limited to personnel specially instructed and trained in the techniques of real-time PCR and *in vitro* diagnostic procedures.
- Good laboratory practice is essential for proper performance of this assay. Extreme care should be taken to preserve the purity of the components of the kit and reaction setups. All reagents should be closely monitored for impurity and contamination. Any suspicious reagents should be discarded.
- Appropriate specimen collection, transport, storage and processing procedures are required for the optimal performance of this test.
- This assay must not be used on the specimen directly. Appropriate nucleic acid extraction methods have to be conducted prior to using this assay.
• The presence of RT-PCR inhibitors (e.g. heparin) may cause false negative or invalid results.
• Potential mutations within the target regions of the MERS-CoV genome covered by the primers and/or probes used in the kit may result in failure to detect the presence of the pathogens.
• As with any diagnostic test, results of the RealStar® MERS-CoV (N gene) RT-PCR Kit 1.0 need to be interpreted in consideration of all clinical and laboratory findings.

13. Quality Control

In accordance with the altona Diagnostics GmbH ISO EN 13485-certified Quality Management System, each lot of RealStar® MERS-CoV (N gene) RT-PCR Kit 1.0 is tested against predetermined specifications to ensure consistent product quality.

14. Technical Assistance

For customer support, please contact our Technical Support:

 e-mail: support@altona-diagnostics.com
 phone: +49-(0)40-5480676-0

15. Literature

16. Trademarks and Disclaimers

RealStar® (altona Diagnostics); ABI Prism® (Applied Biosystems); ATCC® (American Type Culture Collection); CFX96™ (Bio-Rad); Cy® (GE Healthcare); FAM™, JOE™, ROX™ (Life Technologies); LightCycler® (Roche); SmartCycler® (Cepheid); Maxwell® (Promega); Mx 3005P™ (Stratagene); NucliSENS®, easyMag® (bioMérieux); Rotor-Gene®, QIAamp®, MinElute®, QIAsymphony® (QIAGEN); VERSANT® (Siemens Healthcare).

Registered names, trademarks, etc. used in this document, even if not specifically marked as such, are not to be considered unprotected by law.

The RealStar® MERS-CoV (N gene) RT-PCR Kit 1.0 is a CE-marked diagnostic kit according to the European in vitro diagnostic directive 98/79/EC.

Product not licensed with Health Canada and not FDA cleared or approved.

Not available in all countries.

© 2018 altona Diagnostics GmbH; all rights reserved.
17. Explanation of Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>IVD</td>
<td>In vitro diagnostic medical device</td>
</tr>
<tr>
<td>LOT</td>
<td>Batch code</td>
</tr>
<tr>
<td>CAP</td>
<td>Cap color</td>
</tr>
<tr>
<td>REF</td>
<td>Product number</td>
</tr>
<tr>
<td>CONT</td>
<td>Content</td>
</tr>
<tr>
<td>NUM</td>
<td>Number</td>
</tr>
<tr>
<td>COMP</td>
<td>Component</td>
</tr>
<tr>
<td>GTIN</td>
<td>Global trade identification number</td>
</tr>
<tr>
<td>📚</td>
<td>Consult instructions for use</td>
</tr>
<tr>
<td>🔽</td>
<td>Contains sufficient for “n” tests/reactions (rxns)</td>
</tr>
<tr>
<td>⏰</td>
<td>Temperature limit</td>
</tr>
<tr>
<td>📦</td>
<td>Use-by date</td>
</tr>
<tr>
<td>🏭</td>
<td>Manufacturer</td>
</tr>
<tr>
<td>🚸</td>
<td>Caution</td>
</tr>
<tr>
<td>📝</td>
<td>Note</td>
</tr>
<tr>
<td>📚</td>
<td>Version</td>
</tr>
</tbody>
</table>
Notes:
always a drop ahead.

altona Diagnostics GmbH
Mörkenstr. 12
22767 Hamburg, Germany

phone +49 40 548 0676 0
fax +49 40 548 0676 10
e-mail info@altona-diagnostics.com

www.altona-diagnostics.com